Kesebangunan dan kekongruenan merupakan bagian dari ilmu geometri. Pada kesempatan kali ini, materi yang akan disampaikan meliputi kesebangunan dan kekongruenan. Dua bangun datar dapat dikatakan sebangun apabila setiap sisi-sisi dari kedua bangun tersebut memiliki nilai perbandingan yang sama. Sedangkan dua bangun datar dapat dikatakan kongruen apabila diantara kedua bangun datar tersebut memiliki bentuk, ukuran dan besar sudut yang sama. Perhatikan gambar berikut. A. Kesebangunan Kesebangunan dilambangkan dengan ≈. Hubungan dua bangun datar dapat dikatakan sebangun apabila memenuhi syarat seperti berikut. Sudut-sudut yang bersesuaian sama besar Panjang sisi-sisi sudut yang bersesuaian memiliki perbandingan yang sama ane. Dua bangun datar yang sebangun Dua bangun datar diatas adalah sebangun. Oleh karena itu dua bangun datar diatas memiliki sifat-sifat sebagai berikut. a. Pasangan sisi yang bersesuaian memiliki perbandingan nilai yang sama. Berikut dapat dibuktikan Jadi, dapat disimpulkan bahwa = b. Besar Sudut yang bersesuaian sama yaitu; 2. Dua segitiga yang sebangun Segitiga ABC dan PQR adalah sebangun, karena memiliki sifat seperti berikut. a. Perbandingan sisi yang sama besar bersesuaian sama besar, yaitu; Ac bersesuaian dengan PR = AB bersesuaian dengan PQ = BC bersesuaian dengan QR = Jadi, dapat disimpulkan bahwa b. Besar sudut-sudut yang bersesuaian sama, yaitu; Perhatikan segitiga berikut! ΔABC danΔADE sebangun, maka Perhatikan segitiga siku-siku berikut! Apabila pada segitiga siku-sikudiatas dibuat garis dari sudut A ke sisi miring BC maka akan diperoleh rumus AB2 = BD x BC Air conditioning2 = CD 10 CB AD2 = BD x CD B. Kekongruenan Kekongruenan dilambangkan dengan ≅. Kedua benda dikatakan kongruen jika memiliki bentuk dan ukuran yang sama. ane. Dua bangun datar yang kongruen Pada kedua bangun di atas, panjang KL = PQ, Panjang LM = QR, panjang MN = RS, panjang NK = SPdan oleh karena itu, pada bangun KLMN dan PQRS adalah kongruen karena memiliki bentuk dan ukuran yang sama. 2. Dua segitiga yang kongruen Secara geometris dua segitiga yang kongruen adalah dua segitiga yang saling menutupi dengan tepat. Sifat dua segitiga kongruen yaitu; a. Pasangan sisi yang bersesuaian sama panjang b. Sudut yang bersesuaian sama besar Syarat dua segitiga yang kongruen adalah sebagai berikut. a. Tiga sisi yang bersesuaian sama besar sisi, sisi, sisi Pada segitiga ABC dan segitiga PQR di atas, bahwa panjang AB = PQ, panjang AC = PR, dan panjang BC = QR. b. Sudut dan dua sisi yang bersesuaian sama besar sisi, sudut, sisi Pada segitiga ABC dan segitigaPQR di atas, bahwa sisi AB = PQ,∠B = ∠Q, dansisi BC = QR c. Satu sisi apit dan dua sudut yang bersesuaian sama besar sudut, sisi, sudut Pada segitiga ABC dan segitiga PQR di atas bahwa,∠A = ∠P,sisi Ac = PR, dan∠Q = ∠R Contoh Soal 1. Perhatikan gambar berikut! Pada bangun persegi panjang ABCD dan PQRS di atas adalah sebagun. Tentukan a. Panjang PQ b. Luas dan keliling persegi panjang PQRS Pembahasan a. Perbandingan sisi AB dengan Ad bersesuaian dengan sisi PQ dan PS sehingga Jadi, panjang PQ = 24 b. Mencari luas dan keliling persegi panjang PQRS dan Luas persegi panjang = panjang x lebar Luas persegi panjang PQRS = PQ x PS = 24 cm x six cm = 144 cm2 Keliling persegi panjang = Keliling persegi panjang PQRS = PQ + QR + RS + SP = 24 cm + 6 cm + 24 cm + vi cm = 60 cm two. Perhatikan gambar berikut! Tentukan Panjang DB Pembahasan Gambar di atas adalah gambar bangunΔABC danΔADEdan kedua bangun tersebut adalah sebangun. Untuk menentukan DB, langkah yang dilakukan adalah menentukan AB terlebih dahlu dan ambil perbandingan alas dan tinggi dari kedua sisi segitiga seperti berikut. Dengan demikian, DB = AB – AD = xv cm – 10 cm = 5 cm iii. Perhatikan gambar segitiga dibawah ini! Tentukan QR dan QU Pembahasan Seperti penyelesaian pada soal nomor 2. Ambil perbandingan sisi-sisi yang bersesuaian dari segitiga PQR dan segitiga SUR! QU = QR – UR = 20 cm – 15 cm = 5 cm Jadi, panjang sisi QR = 20 cm dan panjang sisi QU = 5 cm 4. Perhatikan gambar berikut. Tentukan panjang DE! Pembahasan Pada segitiga ABC dan EDC adalah sebangun, maka; Jadi , panjang DE adalah 18 cm 5. Perhatikan gambar berikut! Pembahasan Segitiga ABC dan EDC di atas adalah sebangun, maka; Jadi, panjang DE adalah 12 cm 6. Perhatikan segitiga dibawah ini! Jika telah diketahui panjang SR adalah 8 cm, tentukan panjang QS! Pembahasan kedua segitiga SPQ dan RPS di atas adalah kongruen. Untuk mencari panjang QS, maka tentukanlah terlebih dahulu panjang PS dan gunakanlah phytagoras akan didapat angka 6 cm untuk panjang PS. Selanjutnya lakukan perbandingan sisi yang sesuai! Jadi, dapat diketahui bahwa panjang QS adalah four,five cm vii. Dari gambar di bawah ini tentukanlah panjang EF! Pembahasan Buat satu garis yang sejajar dengan garis AD namakan CH seperti gambar berikut! Setlah dibuat garis maka muncul sisi baru yaitu, AH = xv cm, EG = 15 cm, dan HB = 13 cm. Kemudian ambil dua sisi segitiga yang sebangun GFC dan HBC selanjutnya bandingkan sisi-sisi yang bersesuaian. Dengan demikian panjang EF = EG + GF = fifteen cm + four cm = nineteen cm viii. Perhatikan gambar dibawah ini! Tentukan panjang sisi EF, apabila titik E dan titik F berturut-turut merupakan titik tengah diagonal sisi DB dan diagonal sisi CA! Pembahasan Menggunakan cara pertama, Perhatikan garis DB yang dapat dibagi menjadi beberapa segmen yaitu garis DE, EG, dan GB. Misal panjang DB adalah 2a, maka; DE = a EB = a Dari kesebangunan segitiga DGC dan segitiga AGB maka diperoleh perbandingan panjang garis DG GB yaitu 2 i. Besar nilai perbandingan DG GB sama dengan twoi diperoleh dari penyederhanaan perbandingan 24 cm 12 cm. Sehingga, Setelah garis DB dibagi menjadi beberapa segmen maka terlihat bahwa DE + GE = DG, sehingga, Selanjutnya, bandingkan sisi-sisi yang bersesuaian pada segitiga kongruen ABG dan EGF. Menggunakan cara kedua, Namun, harus diingat! cara ini hanya digunakan untuk tipe soal yang seperti ini saja, jadi titik E dan F nya ditengah-tengah, dan jangan gunakan cara ini untuk menyelesaikan soal tipe yang lain ix. Perhatikan gambar dibawah ini! Tentukan panjang TQ Pembahasan Misalkan TQ = X, maka Jadi, panjang TQ adalah 6 cm x. Perhatikan gambar dibawah ini! Tentukan panjang EF… Pembahasan Buatlah garis bantu, beri nama, misalkan BG. Bandingkan sisi segitiga besar BGC dan segitiga kecil BHF yang bersesuaian hingga diperoleh panjang HF. Jadi, panjang EF adalah 23 cm
Bendaberikut yang termasuk bangun ruang sisi lengkung adalah . laptop. loker kelas. gelas minum. Luas permukaan pada gambar berikut adalah cm 2. 616. 880. 1496. Perhatikan gambar di bawah! Jika panjang KP = 10 cm, PN = 8 cm, dan panjang LM = 12 cm, maka panjang MK = cm. 12. 15. 16. 20. CPerhatikan gambar berikut. ∆ ABC ~ ∆ CDE c a Dari gambar tersebut kita ketahui bahwa: x D E ∠DCE = ∠ACB (berimpitan) b d ∠CDE = ∠CAB (sehadap) y ∠CED = ∠CBA (sehadap) C B Jadi ketiga sudut yang bersesuaian sama besar. Jika panjang PR = 9 cm dan PQ = 18 cm, panjang sisi PS adalah.Perhatikangambar berikut. Panjang sisi-sisi PQ dan PR masing-masing adalah.A. 6√2 cm dan 9 cmB. 6√3 cm dan 9 cmC. 6√2 cm dan. PERBANDINGAN PANJANG SISI-SISI PADA SEGITIGA SIKU-SIKU KHUSUS PADA MATEMATIKA YANG MUDAH UNTUK DIKUASAI - DOMINIC NEWS. Kegiatan 6 6 Menentukan perbandingan panjang sisi segitiga yang bersudut - YouTube
Sifatsifat Persegi panjang adalah sisi yang berhadapan sama panjang, keempat sudutnya sama besar yaitu 90 0, kedua garis diagonalnya sama panjang, Menentukan panjang diagonal persegi panjang (perhatikan gambar persegi panjang diatas) 4. Menentukan sisi panjang jika diketahui luas dan lebar. Contoh soal : Sebuah persegi panjang luasnya 216